olorenchemengine.external.GaussianProcess package#
Submodules#
olorenchemengine.external.GaussianProcess.main module#
- class olorenchemengine.external.GaussianProcess.main.GaussianProcessClassifier(*args, **kwargs)#
Bases:
BaseEstimator
Wrapper for sklearn GaussianProcessClassifier
- class olorenchemengine.external.GaussianProcess.main.GaussianProcessModel(representation: BaseVecRepresentation, kernel: str = None, kernel_params: dict = {}, alpha: float = 1e-10, random_state: int = None, **kwargs)#
Bases:
BaseSKLearnModel
Gaussian process model using SciPy’s implementation of Gaussian process models.
- Parameters:
representation (BaseVecRepresentation) – Representation to use.
kernel (str) – Kernel to use. Default is None which uses SciPy’s default.
kernel_params (dict) – Parameters for the kernel. Default is {}, where no kernel parameters are passed and SciPy defaults are used.
alpha (float) – Value of alpha to use. Default is 1e-10.
random_state (int) – Random state to use. Default is None.
- class olorenchemengine.external.GaussianProcess.main.GaussianProcessRegressor(*args, **kwargs)#
Bases:
BaseEstimator
Wrapper for sklearn GaussianProcessRegressor
- class olorenchemengine.external.GaussianProcess.main.Tanimoto(*args: Any, **kwargs: Any)#
Bases:
Kernel
Tanimoto kernel.
Adapted from DotProduct kernel in sklearn.gaussian_process.kernels and from Ryan-Rhys Griffiths’ implementation of the Tanimoto kernel in https://towardsdatascience.com/gaussian-process-regression-on-molecules-in-gpflow-ee6fedab2130.
- bew(A, B)#
- diag(X)#
Returns the diagonal of the kernel k(X, X). The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated. :param X: Left argument of the returned kernel k(X, Y). :type X: ndarray of shape (n_samples_X, n_features)
- Returns:
K_diag – Diagonal of kernel k(X, X).
- Return type:
ndarray of shape (n_samples_X,)
- property hyperparameter_sigma_0#
- is_stationary()#
Returns whether the kernel is stationary.